domingo, 6 de marzo de 2011

5ta cancion

5ta cancion

4ta cancion

4ta cancion
https://docs.google.com/?authuser=0#home


3ra cancion

3ra cancion

2da cancion

2da cancion
Reproductor

Impresora 3D

Impresora 3D

PERIFERICOS DEL COMPUTADOR

PERIFERICOS DEL COMPUTADOR

TIPOS DE TARJETAS PERFORADAS(video)

 TIPOS DE TARJETAS PERFORADAS(video)

TIPOS DE TARJETAS PERFORADAS


TIPOS DE TARJETAS PERFORADAS
La tarjeta perforada es una cartulina con unas determinaciones al estar perforadas, lo que supone un código binario. Estos fueron los primeros medios utilizados para ingresar información e instrucciones a un computador en los años 1960 y 1970. Las tarjetas perforadas no solo fueron utilizadas en la informática, sino también por Joseph Marie Jacquard en los telares (de hecho, la informática adquirió las tarjetas perforadas de los telares). Con la misma lógica de perforación o ausencia de perforación, se utilizaron las cintas perforadas.
Actualmente las tarjetas perforadas han caído en el reemplazo por medios magnéticos y ópticos de ingreso de información. Sin embargo, muchos de los dispositivos de almacenamiento actuales, como por ejemplo el CD-ROM también se basan en un método similar al usado por las tarjetas perforadas, aunque por supuesto los tamaños, velocidades de acceso y capacidad de los medios actuales no admiten comparación con las viejas tarjetas.

                                                                
Tarjetas perforadas en un Telar de Jacquard.                   Tarjetas perforadas de un gran órgano de danza.
HISTORIA
Las tarjetas perforadas fueron usadas por primera vez alrededor de 1725 por Basile Bouchon y Jean-Baptiste Falcon como una forma más robusta de los rollos de papel perforados usados en ese entonces para controlar telares textiles en Francia. Esta técnica fue enormemente mejorada por Joseph Marie Jacquard en su telar de Jacquard en 1801. Charles Babbage lanzó la idea del uso de las tarjetas perforadas como un modo de controlar una calculadora mecánica que él mismo diseñó. Herman Hollerith desarrolló la tecnología de procesamiento de tarjetas perforadas de datos para el censo de los Estados Unidos de América de 1890 y fundó la compañía Tabulating Machine Company (1896) la cual fue una de las tres compañías que se unieron para formar la Computing Tabulating Recording Corporation (CTR), luego renombrada IBM. IBM manufacturó y comercializó una variedad de unidades máquinas de registro para crear, ordenar, y tabular tarjetas perforadas, aún luego de expandirse en las computadoras sobre el final de la década del 50. IBM desarrolló la tecnología de la tarjeta perforada como una herramienta poderosa para el procesamiento de datos empresariales y produjo una línea extensiva de unidades máquinas de registro de propósito general. Para el año 1950, las tarjetas IBM y las unidades máquinas de registro IBM se habían vuelto indispensables en la industria y el gobierno. "Do not fold, spindle or mutilate" ("No doblar, enrollar o mutilar") es una versión generalizada de la advertencia que aparecía en algunas tarjetas perforadas, que se convirtió en un lema en la era de la post-Segunda Guerra Mundial (aunque mucha gente no tenía idea de lo que significaba spindle)

Una tarjeta perforada típica para guardar datos, en blanco.
Desde 1900 hasta 1950, las tarjetas perforadas fueron el primer medio para el ingreso y almacenamiento de datos, y el procesamiento en computación institucional y según los archivos de IBM: "Por 1937 [...] IBM tenía 32 prensas trabajando en Endicott, N.Y., imprimiendo, cortando y apilando de 5 a 10 millones de tarjetas perforadas cada día".[1] Las tarjetas perforadas eran usadas incluso como billetes legales, así como cheques y bonos de ahorro del gobierno de los Estados Unidos de América. Durante la década del 60, las tarjetas perforadas fueron gradualmente reemplazadas como primera medida por almacenamiento de datos en cintas magnéticas, mientras computadoras mejores y más capaces se hicieron disponibles. Las tarjetas perforadas fueron todavía comúnmente usadas para ingreso de datos y programación hasta mediados de la década del 70, cuando la combinación de almacenamiento de discos magnéticos de más bajo costo y terminales interactivas asequibles sobre minicomputadoras más baratas hicieron obsoletas a las tarjetas perforadas también para este rol. Sin embargo, su influencia vive a través de muchas convenciones de estándares y formatos de archivos. Las terminales que reemplazaron a las tarjetas perforadas, por ejemplo la IBM 3270, mostraba 80 columnas de texto en modo texto, para compatibilidad con el software existente. Algunos programas todavía operan con la convención de 80 columnas de texto, aunque cada vez menos, mientras más nuevos sistemas emplean interfaz gráfica de usuario con tipos de fuentes de ancho variable.
Hoy en día, las tarjetas perforadas son mayormente obsoletas y reemplazadas por otros métodos de almacenamiento, excepto por aplicaciones especializadas.

FORMATOS DE TARJETAS

En las primeras aplicaciones de las tarjetas perforadas todas usaron disposiciones de tarjetas específicamente diseñadas y su utilidad al principio no se sabia para que era . No fue sino hasta alrededor de 1928 que las tarjetas perforadas y las máquinas fueron hechas "de propósito general". Los bits rectangulares, circulares u ovalados de papel, son llamados chad (recientemente, chads) or chips (en la jerga IBM). Los datos multicaracter, tales como palabras o números grandes, eran guardados en columnas adyacentes de la tarjeta, conocidas como campos. Un grupo de tarjetas es llamado mazo. Una esquina superior de la tarjeta era normalmente cortada, de manera que las tarjetas que no estuvieran orientadas correctamente, o tarjetas que tuvieran diferentes cortes de esquinas, pudieran ser fácilmente identificadas. Las tarjetas eran comúnmente impresas, para que la posición de la fila y columna de una perforación pudiera ser identificada. Para algunas aplicaciones, la impresión podría tener incluidos campos, nombrados y marcados por líneas verticales, logotipos, y más

Tarjeta estándar 5081 de un fabricante no-IBM.
Una de las tarjetas perforadas más comúnmente impresas fue la IBM 5081. Es más, era tan común que otros vendedores de tarjetas usaban el mismo número (ver imagen a la derecha) y hasta los usuarios conocían ese número.

FORMATOS DE TARJETAS PERFORADAS DE HOLLERITH

La tarjeta perforada patentada por Herman Hollerith el 8 de junio de 1887 y usada en las máquinas tabuladoras mecánicas en el censo de 1890 de Estados Unidos de América, era un trozo de cartulina de alrededor de 90mm por 215mm, con orificios redondos y 24 columnas. Esta tarjeta puede ser vista en el sitio de Historia de la Computación de la Universidad de Columbia.[2]
Esta tarjeta tenía el mismo tamaño que un dólar estadounidense en aquella época. Las razones sugeridas para hacerla de este tamaño eran las siguientes:
Pero no hay evidencia real que pruebe que alguna de estas sugerencias sea correcta.
Las tarjetas perforadas de 45 columnas de Hollerith están ilustradas en The application of the Hollerith Tabulating Machine to Brown's Tables of the Moon de Comrie.[3]

TARJETA PERFORADA DE 90-CARACTERES DE UNIVAC


A blank Remington-Rand UNIVAC format card. Card courtesy of MIT Museum.
El formato de la tarjeta perforada de Remington-Rand UNIVAC tenía hoyos redondos. Había 45 columnas con 12 lugares para perforar cada una, y dos caracteres para cada columna. Para el codificado de tarjeta de 90 caracteres, vea Winter, Dik T.. «90-column Punched Card Code». Consultado el 20 de Octubre de 2006.

TARJETA PERFORADA DE FORMATO DE 80 COLUMNAS DE IBM


Tarjeta de un programa en Fortran : Z(1) = Y + W(1).
Este formato de tarjeta de IBM, diseñado en 1928,[4] tenía hoyos rectangulares, 80 columnas con 12 lugares de perforación cada una, y un carácter para cada columna. El tamaño de la tarjeta era de exactamente 187.325mm por 82.55mm. Las tarjetas eran hechas de material liso, de 0.179mm de ancho. Hay alrededor de 143 tarjetas por cada pulgada de espesor. En 1964, IBM cambió de esquinas cuadradas a redondeadas.[5]
Las 10 posiciones inferiores representaban (de arriba a abajo) los dígitos del 0 al 9. Las dos posiciones superiores de una columna eran llamadas perforación de zona 12 (superior), y perforación de zona 11. Originalmente sólo se codificaba información numérica, con una perforación por columna, indicando el dígito. Podían ser agregados signos a un campo sobreperforando el bit menos significativo con una perforación de zona: 12 para suma y 11 para resta. Las perforaciones de zona también tenían otros usos en el procesamiento, como indicar un registro maestro.
Más tarde fueron introducidos códigos para letras mayúsculas y caracteres especiales. Una columna con 2 perforaciones (zona [12,11,0] + dígito [1-9]) era una letra; 3 perforaciones (zona [12,11,0] + dígito [2-4] + 8) era un carácter especial. La introducción del EBCDIC en 1964 permitió columnas con hasta 6 perforaciones (zonas [12,11,0,8,9] + dígito [1-7]). IBM y otros fabricantes usaron codificaciones muy diferentes para caracteres de tarjetas de 80 columnas.[6] [7]

Tarjeta perforada binaria.
Para algunas aplicaciones de computadora, fueron usados formatos de números binarios, donde cada hoyo representaba un único dígito binario (bit), cada columna (o fila) era tratada como un campo de un bit simple, y cualquier combinación de hoyos estaba permitida. Por ejemplo, las computadoras científicas de la serie 704/709/7090/7094 de IBM, trataban cada fila como dos palabras de 36bit, usualmente en columnas de 1-72, ignorando las últimas 8 columnas (las 72 columnas eran seleccionadas usando un panel de control). Otras computadoras, como la IBM 1130 o la System/360, usaban todas las columnas. Para la diversión del operador o un visitante, en modo binario, las tarjetas podían ser perforadas en todas sus posiciones perforables posibles a la vez, estas son llamadas tarjetas de encaje.
El formato de tarjeta de 80 columnas dominó la industria, haciéndose conocidas sólo bajo el nombre de tarjetas IBM, tanto que hasta otras industrias debieron hacer tarjetas y equipamiento para procesarlas.

TARJETAS MARK SENSE

Las tarjetas Mark sense (electrográficas), desarrolladas por Reynold B. Johnson en IBM, tenían óvalos impresos que podían ser marcados con un lápiz electrográfico especial. Las tarjetas podían ser perforadas típicamente con alguna información inicial, como el nombre y lugar de un objeto de inventario. La información a ser adherida, como la cantidad de unidades del objeto en mstock, podía ser marcada en los óvalos. Las perforaciones de tarjetas con una opción para detectar tarjetas mark sense podían entonces perforar la información correspondiente en la tarjeta.

TARJETAS DE APERTURA


Tarjeta de apertura (detalles suprimidos).
Las tarjetas de apertura tienen un hoyo rebanado en el lado derecho de tarjeta perforada. Un trozo de micropelícula de 35 mm que contiene una imagen de microforma es montado en el hoyo. Las tarjetas de apertura son usadas para diagramas de ingeniería de cualquier disciplina de la ingeniería. La información sobre el diagrama, por ejemplo el número de dibujo, típicamente es perforado e impreso en el resresto de la tarjeta. Las tarjetas de apertura tienen algunas ventajas sobre los sistemas digitales para archivar información.[8]

TARJETA PERFORADA IBM DE 51 COLUMNAS

Este formato de tarjeta perforada IBM fue una tarjeta de 80 columnas acortada. El acortamiento a veces se realizaba cortando y quitando, en el momento de la perforación, un trozo de una tarjeta de 80 columnas. Estas tarjetas fueron usadas en algunas aplicaciones de venta minorista e inventarios.

PERFORADORA PORTÁTIL DE IBM


Perforadora portátil de IBM (port-a-punch).
Según los archivos de IBM: La División de Suministros de IBM introdujo la Perforadora Portátil (Port-A-Punch) en 1958 como un rápido y preciso medio para perforar hoyos en tarjetas perforadas IBM especialmente calificadas. Diseñada para llevar en un bolsillo, la perforadora portátil hizo posible crear documentos de tarjetas perforadas en cualquier lugar. El producto fue concebido para operaciones de registro "en el foco" -- tales como inventarios físicos, tickets de trabajo y encuestas estadísticas -- ya que eliminaba la necesidad de escrituras previas o escritura de documentos fuente.[9] Desafortunadamente, los hoyos resultantes quedaban "peludos" y algunas veces causaban problemas con el equipamiento utilizado para leer las tarjetas.

LOS ANTECEDENTES Y LAS ACTUALES IMPRESORAS

LOS ANTECEDENTES Y LAS ACTUALES IMPRESORAS


IMPRESORA

Una impresora es un periférico de ordenador que permite producir una copia permanente de textos o gráficos de documentos almacenados en formato electrónico, imprimiéndolos en medios físicos, normalmente en papel o transparencias, utilizando cartuchos de tinta o tecnología láser. Muchas impresoras son usadas como periféricos, y están permanentemente unidas al ordenador por un cable. Otras impresoras, llamadas impresoras de red, tienen una interfaz de red interno (típicamente wireless o Ethernet), y que puede servir como un dispositivo para imprimir en papel algún documento para cualquier usuario de la red.
Además, muchas impresoras modernas permiten la conexión directa de aparatos de multimedia electrónicos como las tarjetas CompactFlash, Secure Digital o Memory Stick, pendrives, o aparatos de captura de imagen como cámaras digitales y escáneres. También existen aparatos multifunción que constan de impresora, escáner o máquinas de fax en un solo aparato. Una impresora combinada con un escáner puede funcionar básicamente como una fotocopiadora.


IMPRESORAS 
Dispositivo que convierte la salida de la computadora en imágenes impresas. Las impresoras se pueden dividir en 2 tipos: las de impacto y las de no impacto.
IMPRESORAS DE IMPACTO
Una impresora que utiliza un mecanismo de impresión que hace impactar la imagen del carácter en una cinta y sobre el papel. Las impresoras de línea, de matriz de punto y de rueda de margarita son ejemplos de impresoras de  impacto. Impresora de Matriz de puntos, es la impresora más común. Tiene una cabeza de impresión movible con varias puntillas o agujas que al golpear la cinta entintada forman caracteres por medio de puntos en el papel, Mientras mas agujas tenga la cabeza de impresión mejor será la calidad del resultado. Las hay de 10 y 15", las velocidades varían desde: 280 cps hasta 1,066 cps Impresoras de margarita; tiene la misma calidad de una máquina de escribir mediante un disco de impresión que contiene todos los caracteres, están de salida del mercado por lentas. Impresoras de Línea: Son impresoras de alta velocidad que imprimen una línea por vez. Generalmente se conectan a grandes computadoras y a Minicomputadoras. Las impresoras de línea imprimen una línea a la vez desde aproximadamente 100 a 5000 LPM.
IMPRESORAS SIN IMPACTO
Hacen la impresión por diferentes métodos, pero no utilizan el impacto. Son menos ruidosas y con una calidad de impresión notoriamente mejor a las impresoras de impacto. Los métodos que utilizan son los siguientes: Térmicas: Imprimen de forma similar a la máquina de matriz, pero los caracteres son formados marcando puntos por quemadura de un papel especial. Vel. 80 cps. Los faxes trabajan con este método. Impresora de inyección de tinta: Emite pequeños chorros de tinta desde cartuchos desechables hacia el papel, las hay de color. Vel. de 4 a 7 ppm. Electrofotográficas o Láser: Crean letras y gráficas mediante un proceso de fotocopiado. Un rayo láser traza los caracteres en un tambor fotosensible, después fija el toner al papel utilizando calor. Muy alta calidad de resolución, velocidades de 4 a 18 ppm.
TIPOS DE IMPRESORAS
Según la tecnología que empleen se puede hacer una primera clasificación. Los más comunes son los siguientes: Matricial, de inyección de tinta (o inkjet) y láser.


MATRICIALES.
Las impresoras matriciales han sido muy empleadas durante muchos años, ya que las otras tecnologías han sido desarrolladas posteriormente, y en un principio eran muy caras. Hoy en día han sido sustituidas en muchos entornos por sus competidoras, pero todavía son irreemplazables en algunas tareas.
Asi pues, son las únicas que permiten obtener varias copias de un mismo impreso. Esto resulta muy conveniente cuando tenemos la necesidad de realizar varias copias de un mismo documento con la mayor rapidez y que se ejecuten en distintos impresos.
Por ejemplo, cuando necesitamos que cada copia esté hecha en un papel de distinto color, y con algún texto identificativo. En este caso, mediante papel autocopiativo de varias hojas lo podemos realizar de una forma rápida y barata, principalmente cuando la información es de tipo textual.
Al igual que los otros tipos de impresora, sus características básicas a considerar son la velocidad, la calidad y la posibilidad de impresión en color. La velocidad se mide en cps o caracteres por segundo, ya que como hemos dicho esta es la principal función que suelen realizar. La calidad normalmente viene marcada por el número de agujas, que suelen oscilar entre las 8 y las 24, siendo mejor cuanto de mayor número disponga.
A pesar de que en un principio se desarrolló la tecnología matricial en color como competencia directa con las de inyección de tinta, actualmente las impresoras que encontramos suelen ser monocromas, ya que no es la tecnología más adecuada para la impresión de colores, sobretodo en modos gráficos.
Sus principales características son su elevado ruido, y su poca definición, pero en la vertiente de ventajas podemos considerar su economía tanto en compra como en mantenimiento. Aunque hoy en día sus precios de compra van parejos a los de las inkjet, ofreciendo éstas más ventajas. Son sólo aconsejables para la impresión de texto, siempre que éste no requiera gran calidad, y mayormente cuando empleamos papel continuo.
INYECCIÓN DE TINTA (INKJET)
Aunque en un principio tuvo que competir duramente con sus adversarias matriciales, hoy son las reinas indiscutibles en el terreno domestico, ya que es un entorno en el que la economía de compra y la calidad, tanto en color como en blanco y negro son factores más importantes que la velocidad o la economía de mantenimiento, ya que el número de copias realizadas en estos entornos es bajo.
Su funcionamiento se basa en la expulsión de gotas de tinta líquida a través de unos inyectores que impactan en el papel formando los puntos necesarios para la realización de gráficos y textos.
La tinta se obtiene de unos cartuchos reemplazables que dependiendo del tipo de impresora pueden ser más o menos.
Algunas impresoras utilizan dos cartuchos, uno para la tinta negra y otro para la de color, en donde suelen están los tres colores básicos. Estas impresoras tienen como virtud la facilidad de manejo, pero en contra, si utilizamos más un color que otro, nos veremos obligados a realizar la sustitución del cartucho cuando cualquiera de los tres colore se agote, aunque en los demás compartimentos todavía nos quede tinta de otros colores.
Esto hace que estas impresoras sean bastante más caras de mantenimiento que las que incorporan un cartucho para cada color, pero también suelen ser más económicas en el precio de compra.
También podemos encontrar las famosas impresoras con calidad fotográfica, que suelen contar con cartuchos de 4 colores en vez de 3.
Las características principales de una impresora de inyección de tinta son la velocidad, que se mide en páginas por minuto (ppm)  y que suele ser distinta dependiendo de si imprimimos en color o en monocromo, y la resolución máxima, que se mide en puntos por pulgada (ppp). En ambos valores, cuanto mayores mejor.
Como en otros componentes, es importante disponer de los "drivers" adecuados, y que estos estén convenientemente optimizados.
LÁSER.
Las últimas impresoras que vamos a ver van a ser las de tecnología láser. Esta tecnología es la misma que han utilizado mayormente las máquinas fotocopiadoras desde un principio, y el material que se utiliza para la impresión es un polvo muy fino que pasa a un rodillo que previamente magnetizado en las zonas que contendrán la parte impresa, es pasado a muy alta temperatura por encima del papel, que por acción de dicho calor se funde y lo impregna.
Estas impresoras suelen ser utilizadas en el mundo empresarial, ya que su precio de coste es más alto que el de las de inyección de tinta, pero su coste de mantenimiento es más bajo, y existen dispositivos con una muy alta velocidad por copia y calidad y disponibilidad superiores, así como también admiten una mayor carga de trabajo.
Una pega es que aun y existiendo modelos en color, su precio todavía sigue siendo astronómico para la mayor parte de economías, y su velocidad relativamente baja, siendo los modelos más habituales los monocromos.
Una de las características más importantes de estas impresoras es que pueden llegar a velocidades muy altas, medidas en páginas por minuto. Su resolución también puede ser muy elevada y su calidad muy alta. Empiezan a ser habituales resoluciones de 1.200 ppm (puntos por pulgada) y velocidades de 16 ppm, aunque esta velocidad puede ser mucho mayor en modelos preparados para grupos de trabajo, hasta 40 ppm y más.
Otras características importantes son la cantidad de memoria disponible y el modelo  de procesador, que suele ser de tipo RISC. La memoria es importante para actuar como "buffer" en donde almacenar los trabajos que le van llegando y para almacenar fuentes y otros motivos gráficos o de texto que permitan actuar como "preimpresos" e imprimirlos en cada una de las copias sin necesidad de mandarlos en cada página.

Matriz de puntos (Dot-Matrix)

En el sentido general, muchas impresoras se basan en una matriz de píxeles o puntos que, juntos, forman la imagen más grande. Sin embargo, el término matriz o de puntos se usa específicamente para las impresoras de impacto que utilizan una matriz de pequeños alfileres para crear puntos precisos. Dichas impresoras son conocidas como matriciales. La ventaja de la matriz de puntos sobre otras impresoras de impacto es que estas pueden producir imágenes gráficas además de texto. Sin embargo, el texto es generalmente de calidad más pobre que las impresoras basadas en impacto de tipos.
Algunas sub-clasificaciones de impresoras de matriz de puntos son las impresoras de alambre balístico y las impresoras de energía almacenada.
Las impresoras de matriz de puntos pueden estar basadas bien en caracteres o bien en líneas, refiriéndose a la configuración de la cabeza de impresión.
Las impresoras de matriz de puntos son todavía de uso común para aplicaciones de bajo costo y baja calidad como las cajas registradoras. El hecho de que usen el método de impresión de impacto les permite ser usadas para la impresión de documentos autocopiativos como los recibos de tarjetas de crédito, donde otros métodos de impresión no pueden utilizar este tipo de papel. Las impresoras de matriz de puntos han sido superadas para el uso general en computación.
TINTA
Existen dos tipos de tinta para impresoras:
  • Tinta penetrante de secado lento: Se utiliza principalmente para impresoras monocromáticas.
  • Tinta de secado rápido: Se usa en impresoras en color, ya que en estas impresoras, se mezclan tintas de distintos colores y éstas se tienen que secar rápidamente para evitar la distorsión.
El objetivo de todo fabricante de tintas para impresoras es que sus tintas puedan imprimir sobre cualquier medio y para ello desarrollan casi diariamente nuevos tipos de tinta con composiciones químicas diferentes.

IMPRESORA TÉRMICA

Una impresora térmica obtiene la imagen mediante el calentamiento de papel sensible al calor. Éste es un sistema muy empleado en terminales de venta, cajeros automáticos, para imprimir tickets o recibos, o para crear etiquetas.

LOS DIFERENTES TIPOS DE CINTAS PERFORADAS

LOS DIFERENTES TIPOS DE CINTAS PERFORADAS
La cinta perforada es un método obsoleto de almacenamiento de datos, que consiste en una larga tira de papel en la que se realizan agujeros para almacenar los datos. Fue muy empleada durante gran parte del siglo XX para comunicaciones con teletipos, y más tarde como un medio de almacenamiento de datos para miniordenadores y máquinas herramienta tipo CNC.
ORIGEN
Las primeras cintas perforadas se emplearon en los telares mecánicos y bordados, donde tarjetas con instrucciones simples acerca de los movimientos solicitados de la máquina fueron primero alimentadas individualmente, después controladas por otras tarjetas de instrucciones y más tarde fueron alimentadas como una sucesión de tarjetas adheridas.
Esto llevó al concepto de comunicar la información no como una sucesión de tarjetas individuales sino como una "tarjeta contínua", o cinta. Muchos operadores de bordado profesional se siguen refiriendo a las personas que crean los diseños y patrones mecánicos como "perforadores", aunque tanto las tarjetas como las cintas perforadas dejaron de usarse, tras muchos años, hacia la década de 1990.
En 1846 Alexander Bain empleó cinta perforada para enviar telegramas.
FORMATOS DE CINTAS
Los datos estaban representados por la presencia o ausencia de un agujero en la cinta en una posición determinada. Las cintas originales tenían cinco filas de agujeros para los datos. Cintas posteriores tuvieron 6, 7 y 8 filas. Una fila extra de taladros consecutivos más pequenos servía para arrastrar la cinta, generalmente con una rueda dentada. El texto se codificaba de varias maneras. El estándar de codificación de caracteres más primitivo fue el de Baudot, que se remonta al siglo XIX y tenía 5 agujeros. Estándares posteriores, tales como el Fieldata y el Flexowriter, tenían 6 agujeros. A comienzos de la década de 1960, la Asociación Americana de Estándares (American Standards Association, ASA) llevó a cabo un proyecto para desarrollar un código universal para el procesamiento de datos, que sería conocido como ASCII. Este código de 7 niveles fue adoptado por algunos fabricantes de teletipos, como AT&T (Teletype). Otros, como Telex, siguieron empleando el Baudot.
CINTA TROQUELADA
Una variación de la cinta perforada fue el dispositivo llamado Impresora Troqueladora (Chadless Printing Reperforator). Esta máquina era capaz de marcar las señales de teletipo recibidas en una cinta y de imprimir el mensaje sobre ella al mismo tiempo, usando un mecanismo de impresión similar al de una impresora de páginas corriente. El marcado, en lugar de perforar completamente los habituales agujeros redondos, realizaba unos cortes con forma de pequeñas U en el papel, de modo que no se producían lentejuelas; el "agujero" seguía estando relleno con una pequeña trampilla de papel. Al no estar completamente perforado el agujero, la impresión en el papel permanecía intacto y legible. Esto permitía a los operadores leer la cinta sin necesidad de descifrar los agujeros, lo que facilitaba la retransmisión del mensaje hacia otras estaciones de la red. Naturalmente, tampoco tenía una "caja para lentejuelas" que hubiera que vaciar de tanto en tanto. La única desventaja de este mecanismo era que la cinta troquelada, una vez marcada, no se recogía correctamente, debido que a las aletitas sobresalientes del papel solían engancharse en la siguiente vuelta de la cinta, y por eso no se podía enrollar en un solo plano. Otra desventaja, como se vería con el tiempo, era que no había un modo fiable de leer las cintas troqueladas por los medios ópticos empleados por los sistemas de lectura de alta velocidad posteriores. De todas maneras, los lectores mecánicos empleados en los equipos de velocidad más estándar no tenían problemas con las cintas troqueladas, ya que detectaban los agujeros mediante pernos con resorte, que fácilmente apartaban las aletitas de papel del camino.

COMUNICACIONES

La cinta perforada se usó como una manera de almacenar mensajes de los teletipos. Los operadores tecleaban el mensaje que se grababa en la cinta de papel, y después lo enviaban pasando la cinta a gran velocidad. El lector de cinta era capaz de transmitir el mensaje mucho más rápido de lo que un operador humano medio podría teclear, con el consiguiente ahorro en los costes del alquiler de las líneas. Las cintas perforadas en el punto de recepción podían ser usadas para retransmitir los mensajes a otra estación. Se crearon extensas redes del tipo guarda y pasa (store and forward) que usaban estas técnicas.
Programas en cinta de papel para el miniordenador Data General Nova.
Cuando se crearon los primeros miniordenadores, la mayoría de los fabricantes aprovecharon los teletipos ASCII producidos en masa (primordialmente el ASR33) como una solución de bajo coste para la entrada por teclado y salida impresa. Como consecuencia la cinta perforada se convirtió en un popular medio de almacenamiento de bajo coste, y no era raro encontrar una selección de cintas que contenían programas útiles en la mayoría de las instalaciones de miniordenadores. Los lectores ópticos, más rápidos, también eran comunes.

MAQUINARIA AUTOMATIZADA

En la década de 1970, los equipos de fabricación asistida por ordenador (computer-aided manufacturing, CAM) solían usar cinta de papel. La cinta de papel fue un medio de almacenaje muy importante para las máquinas de retorcido de cables (wire-wrap) controladas por ordenador, por ejemplo. Un lector de cinta de papel era más pequeño y mucho más barato que los lectores de tarjetas de Hollerith o de cinta magnética. Se inventaron cintas de papel negro de fibra larga de alta calidad encerado y lubricado, y "papel" Mylar así que la producción de cintas para estas máquinas fue bastante duradera.

CRIPTOGRAFÍA

La cinta de papel fue la base del cifrado Vernam, inventado en 1917. Durante el último tercio del siglo XX, la Agencia de Seguridad Nacional (National Security Agency, NSA) de los EE.UU. usó cintas de papel perforado para distribuir claves criptográficas. Las cintas de papel de 8 niveles se distribuyeron bajo estrictos controles de registro y eran leídas por un dispositivo de carga, como el KOI-18 manual, que era conectado temporalmente a cada dispositivo de seguridad que necesitaba las nuevas claves. La NSA había intentado reemplazar este método con un Sistema Electrónico de Gestión de Claves Electronic Key Management System, EKMS) más seguro, pero es muy posible aún se siga utilizando.